Friday, February 28, 2014

Liar Paradox


The Liar paradox concerns such assertions as this: The assertion that you are currently considering is not true. Let us call that assertion ‘L’. L says that L is not true, so if what L says is the case, then L is not true. But statements are true if what they say is the case, so L would also be true. Does it follow from that contradiction that what L says is not the case? But if it is not the case that L is not true, then L is true. And if any statement is true, then what it says is the case. So in short, L is true if, and only if, L is not true.

That is paradoxical because we expect L to be either true or else not true. But, if L was about as true as not, then it would follow – from the meaning of L (that L is not true) – only that L was about as untrue as not (about as true as not). And that is a general linguistic possibility (see Vagueness). Now, since L asserts that L is not true, L asserts that it is not true that L is not true – i.e. it asserts that L is true – as well as that L is not true. And that is worrying, because ‘L is true’ would be the negation of ‘L is not true’ were ‘L’ naming a classical proposition; but, classical logic would not apply to L were L about as true as not. And while it would certainly be an unusual fact about such self-referential denials – that as they deny that they are true they thereby assert that they are – it is not too odd. On the contrary, it would help us solve the main problem facing any resolution, the so-called ‘revenge’ problem:

Consider the following self-description (call it ‘R’): The description that you are now reading is not at all true, not even about as true as not. If R was about as true as not, then it would be false – not about as true as not – that R was not even about as true as not. But, R is the claim that it is not at all true that R is not at all true – i.e. that R is to some extent true – as well as that R is not at all true, so if R was about as true as not, then although it would be false that R was not even about as true as not, it would be true that R was to some extent true. R would appear to be, not so much false, as about as true as not. Or, would R rather seem to be both true and false? But R, like L, makes only one assertion – that it is itself untrue – the meaning of which includes it not being the case that it is not true.

The thought that L is both true and false does not necessarily contradict the present resolution, though. If a description is about as true as not, then it is about as true as not that it is true, and it is about as true as not that it is false. Furthermore, since most philosophers think that L is certainly not true (whatever else it is), hence the fact that some philosophers – e.g. Graham Priest – think that it is true (and false) just adds to the plausibility of its being about as true as not. Still, there is only some truth to Priest’s resolution,1 according to the present resolution. To see why, it may help to consider the following version of the paradox: Is the answer to this question ‘no’? Questions of the form ‘is X Y?’ want answers that are either ‘yes’ (X is Y) or else ‘no’ (X is not Y), but the answer to our question cannot be ‘yes’ (that would mean that it was ‘no’), and it cannot be ‘no’ (that would mean the answer was not ‘no’). It would be coherent to reply that the answer is to some extent ‘no’, because it is not just ‘no’, it is to some extent ‘yes’, because it is to some extent ‘no’. And it would be natural for us to shorten that to ‘yes and no’. But, that cannot mean that the answer is, and at the same time is not, ‘no’; it can only mean that the answer is to some extent ‘yes’ and is to some extent ‘no’.

There is also some truth to the resolution that sentences like ‘this description is not true’ cannot be used to make assertions: They cannot be used to make classically logical assertions. But, there is surely only some truth to this resolution. I can say ‘what I am now saying is not true’ and mean by those eight words that what I am thereby saying is not true. Neither the fact that I am thereby saying that it is not true that what I am saying is not true, nor my belief that what I am saying is only about as true as not, stops me using those eight ordinary words to assert that what I am saying with them is not true.

There is also some truth to the resolution that adds ‘neither true nor false’ to the classical truth-values (according to the present resolution), because when a description is about as true as not, it is neither true enough nor false enough for classical logic. But again, there is only some truth to that resolution. It is only about as true as not to say that it is not true, and only about as true as not to say that it is not false. A more sophisticated version replaces ‘true’ and ‘false’ with ‘certainly true’ and ‘certainly not true’, and then adjoins ‘possibly, but only possibly, true’ to those. But maybe those are more like belief-states than truth-values. A more formal approach models ‘true’ by 1 and ‘false’ by 0 – as in Boolean algebra – and then uses a continuum of numbers to bridge the gap – a so-called ‘fuzzy logic’2 – but again, those are more like probabilities than truth-values.

Still, the fuzzy logical resolution is not too odd: L being true insofar as it is not true does imply that L is as true as not, which is well modelled by a truth-value of 0.5. Nevertheless, if truth is not so much a matter of degree as a fundamentally black-and-white affair with an indistinctly grey boundary, then L being as true as not would not mean that L was exactly as true as not, so much as about as true as not. To see why, it may help to consider the following version of the paradox. According to Peter Eldridge-Smith,3 there is a possible world in which Pinocchio’s nose grows if, and only if, he is saying something that is not true, but no such world in which he says ‘my nose is not growing’ because his nose would then be growing if, and only if, it was not growing. Our world is quantum mechanical, though. So it is possible for objects to be in entangled states, and so it is logically possible for Pinocchio’s nose to be as much growing as not. And such states are most accurately described with probabilities. But even if Pinocchio’s nose was growing exactly as much as not, his ‘my nose is not growing’ would have to have the borderline truth-value of the language of his ‘my nose is not growing’.

Many resolutions of the Liar paradox have been investigated. But the explanatory power of the present resolution is only enhanced by those alternatives: If the present resolution is true, then as we have to some extent already seen, there is some truth to those alternatives, which goes some way towards explaining why each of them was suggested; and furthermore, most of them promise a way around a highly unattractive mathematical proof – a proof of the temporality of number (aka Cantor’s paradox) – which the present resolution does not. See post below, Cantor and Russell (posted prior to this:)

Notes

1. For Priest’s resolution, as one formal system amongst many, see §4.1.2 of J.C. Beall and Michael Glanzberg, Liar Paradox.

2. Petr Hajek, Fuzzy Logic.

3. Peter and Veronique Eldridge-Smith, ‘The Pinocchio Paradox’, Analysis 70 (2010), 212–215.

No comments: